Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circulation ; 149(15): 1205-1230, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38189150

RESUMO

BACKGROUND: The relationship between heart failure (HF) and atrial fibrillation (AF) is clear, with up to half of patients with HF progressing to AF. The pathophysiological basis of AF in the context of HF is presumed to result from atrial remodeling. Upregulation of the transcription factor FOG2 (friend of GATA2; encoded by ZFPM2) is observed in human ventricles during HF and causes HF in mice. METHODS: FOG2 expression was assessed in human atria. The effect of adult-specific FOG2 overexpression in the mouse heart was evaluated by whole animal electrophysiology, in vivo organ electrophysiology, cellular electrophysiology, calcium flux, mouse genetic interactions, gene expression, and genomic function, including a novel approach for defining functional transcription factor interactions based on overlapping effects on enhancer noncoding transcription. RESULTS: FOG2 is significantly upregulated in the human atria during HF. Adult cardiomyocyte-specific FOG2 overexpression in mice caused primary spontaneous AF before the development of HF or atrial remodeling. FOG2 overexpression generated arrhythmia substrate and trigger in cardiomyocytes, including calcium cycling defects. We found that FOG2 repressed atrial gene expression promoted by TBX5. FOG2 bound a subset of GATA4 and TBX5 co-bound genomic locations, defining a shared atrial gene regulatory network. FOG2 repressed TBX5-dependent transcription from a subset of co-bound enhancers, including a conserved enhancer at the Atp2a2 locus. Atrial rhythm abnormalities in mice caused by Tbx5 haploinsufficiency were rescued by Zfpm2 haploinsufficiency. CONCLUSIONS: Transcriptional changes in the atria observed in human HF directly antagonize the atrial rhythm gene regulatory network, providing a genomic link between HF and AF risk independent of atrial remodeling.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Insuficiência Cardíaca , Humanos , Camundongos , Animais , Fibrilação Atrial/genética , Redes Reguladoras de Genes , Cálcio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Átrios do Coração , Insuficiência Cardíaca/genética , Genômica , Fator de Transcrição GATA4/genética
2.
Cell Rep ; 42(6): 112665, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37330911

RESUMO

Mechanisms underlying distinct specification, commitment, and differentiation phases of cell fate determination remain undefined due to difficulties capturing these processes. Here, we interrogate the activity of ETV2, a transcription factor necessary and sufficient for hematoendothelial differentiation, within isolated fate intermediates. We observe transcriptional upregulation of Etv2 and opening of ETV2-binding sites, indicating new ETV2 binding, in a common cardiac-hematoendothelial progenitor population. Accessible ETV2-binding sites are active at the Etv2 locus but not at other hematoendothelial regulator genes. Hematoendothelial commitment coincides with the activation of a small repertoire of previously accessible ETV2-binding sites at hematoendothelial regulators. Hematoendothelial differentiation accompanies activation of a large repertoire of new ETV2-binding sites and upregulation of hematopoietic and endothelial gene regulatory networks. This work distinguishes specification, commitment, and sublineage differentiation phases of ETV2-dependent transcription and suggests that the shift from ETV2 binding to ETV2-bound enhancer activation, not ETV2 binding to target enhancers, drives hematoendothelial fate commitment.


Assuntos
Células-Tronco Hematopoéticas , Fatores de Transcrição , Diferenciação Celular/genética , Endotélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/metabolismo , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
JCI Insight ; 5(18)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32841220

RESUMO

Atrial fibrillation (AF) is the most common cardiac arrhythmia, yet the molecular signature of the vulnerable atrial substrate is not well understood. Here, we delineated a distinct transcriptional signature in right versus left atrial cardiomyocytes (CMs) at baseline and identified chamber-specific gene expression changes in patients with a history of AF in the setting of end-stage heart failure (AF+HF) that are not present in heart failure alone (HF). We observed that human left atrial (LA) CMs exhibited Notch pathway activation and increased ploidy in AF+HF but not in HF alone. Transient activation of Notch signaling within adult CMs in a murine genetic model is sufficient to increase ploidy in both atrial chambers. Notch activation within LA CMs generated a transcriptomic fingerprint resembling AF, with dysregulation of transcription factor and ion channel genes, including Pitx2, Tbx5, Kcnh2, Kcnq1, and Kcnip2. Notch activation also produced distinct cellular electrophysiologic responses in LA versus right atrial CMs, prolonging the action potential duration (APD) without altering the upstroke velocity in the left atrium and reducing the maximal upstroke velocity without altering the APD in the right atrium. Our results support a shared human/murine model of increased Notch pathway activity predisposing to AF.


Assuntos
Potenciais de Ação , Fibrilação Atrial/patologia , Biomarcadores/metabolismo , Regulação da Expressão Gênica , Átrios do Coração/patologia , Insuficiência Cardíaca/patologia , Miócitos Cardíacos/patologia , Animais , Fibrilação Atrial/genética , Átrios do Coração/metabolismo , Insuficiência Cardíaca/genética , Humanos , Camundongos , Miócitos Cardíacos/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transcriptoma
5.
Circ Res ; 127(1): 34-50, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32717170

RESUMO

Genome-wide association studies have uncovered over a 100 genetic loci associated with atrial fibrillation (AF), the most common arrhythmia. Many of the top AF-associated loci harbor key cardiac transcription factors, including PITX2, TBX5, PRRX1, and ZFHX3. Moreover, the vast majority of the AF-associated variants lie within noncoding regions of the genome where causal variants affect gene expression by altering the activity of transcription factors and the epigenetic state of chromatin. In this review, we discuss a transcriptional regulatory network model for AF defined by effector genes in Genome-wide association studies loci. We describe the current state of the field regarding the identification and function of AF-relevant gene regulatory networks, including variant regulatory elements, dose-sensitive transcription factor functionality, target genes, and epigenetic states. We illustrate how altered transcriptional networks may impact cardiomyocyte function and ionic currents that impact AF risk. Last, we identify the need for improved tools to identify and functionally test transcriptional components to define the links between genetic variation, epigenetic gene regulation, and atrial function.


Assuntos
Fibrilação Atrial/genética , Epigênese Genética , Redes Reguladoras de Genes , Animais , Fibrilação Atrial/metabolismo , Loci Gênicos , Humanos , Transcriptoma
6.
Circ Res ; 127(2): e28-e43, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32347164

RESUMO

RATIONALE: ZO-1 (Zona occludens 1), encoded by the tight junction protein 1 (TJP1) gene, is a regulator of paracellular permeability in epithelia and endothelia. ZO-1 interacts with the actin cytoskeleton, gap, and adherens junction proteins and localizes to intercalated discs in cardiomyocytes. However, the contribution of ZO-1 to cardiac physiology remains poorly defined. OBJECTIVE: We aim to determine the role of ZO-1 in cardiac function. METHODS AND RESULTS: Inducible cardiomyocyte-specific Tjp1 deletion mice (Tjp1fl/fl; Myh6Cre/Esr1*) were generated by crossing the Tjp1 floxed mice and Myh6Cre/Esr1* transgenic mice. Tamoxifen-induced loss of ZO-1 led to atrioventricular (AV) block without changes in heart rate, as measured by ECG and ex vivo optical mapping. Mice with tamoxifen-induced conduction system-specific deletion of Tjp1 (Tjp1fl/fl; Hcn4CreERt2) developed AV block while tamoxifen-induced conduction system deletion of Tjp1 distal to the AV node (Tjp1fl/fl; Kcne1CreERt2) did not demonstrate conduction defects. Western blot and immunostaining analyses of AV nodes showed that ZO-1 loss decreased Cx (connexin) 40 expression and intercalated disc localization. Consistent with the mouse model study, immunohistochemical staining showed that ZO-1 is abundantly expressed in the human AV node and colocalizes with Cx40. Ventricular conduction was not altered despite decreased localization of ZO-1 and Cx43 at the ventricular intercalated disc and modestly decreased left ventricular ejection fraction, suggesting ZO-1 is differentially required for AV node and ventricular conduction. CONCLUSIONS: ZO-1 is a key protein responsible for maintaining appropriate AV node conduction through maintaining gap junction protein localization.


Assuntos
Nó Atrioventricular/metabolismo , Frequência Cardíaca , Proteína da Zônula de Oclusão-1/metabolismo , Animais , Nó Atrioventricular/fisiologia , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Conexinas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Proteína da Zônula de Oclusão-1/genética , Proteína alfa-5 de Junções Comunicantes
7.
Circ Res ; 127(3): e94-e106, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32290757

RESUMO

RATIONALE: The heartbeat is organized by the cardiac conduction system (CCS), a specialized network of cardiomyocytes. Patterning of the CCS into atrial node versus ventricular conduction system (VCS) components with distinct physiology is essential for the normal heartbeat. Distinct node versus VCS physiology has been recognized for more than a century, but the molecular basis of this regional patterning is not well understood. OBJECTIVE: To study the genetic and genomic mechanisms underlying node versus VCS distinction and investigate rhythm consequences of failed VCS patterning. METHODS AND RESULTS: Using mouse genetics, we found that the balance between T-box transcriptional activator, Tbx5, and T-box transcriptional repressor, Tbx3, determined the molecular and functional output of VCS myocytes. Adult VCS-specific removal of Tbx5 or overexpression of Tbx3 re-patterned the fast VCS into slow, nodal-like cells based on molecular and functional criteria. In these cases, gene expression profiling showed diminished expression of genes required for VCS-specific fast conduction but maintenance of expression of genes required for nodal slow conduction physiology. Action potentials of Tbx5-deficient VCS myocytes adopted nodal-specific characteristics, including increased action potential duration and cellular automaticity. Removal of Tbx5 in vivo precipitated inappropriate depolarizations in the atrioventricular (His)-bundle associated with lethal ventricular arrhythmias. TBX5 bound and directly activated cis-regulatory elements at fast conduction channel genes required for fast physiological characteristics of the VCS action potential, defining the identity of the adult VCS. CONCLUSIONS: The CCS is patterned entirely as a slow, nodal ground state, with a T-box dependent, physiologically dominant, fast conduction network driven specifically in the VCS. Disruption of the fast VCS gene regulatory network allowed nodal physiology to emerge, providing a plausible molecular mechanism for some lethal ventricular arrhythmias.


Assuntos
Arritmias Cardíacas/metabolismo , Nó Atrioventricular/metabolismo , Ventrículos do Coração/metabolismo , Proteínas com Domínio T/metabolismo , Transcrição Gênica , Potenciais de Ação , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Nó Atrioventricular/fisiopatologia , Padronização Corporal , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Frequência Cardíaca , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Camundongos Knockout , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/genética , Fatores de Tempo
8.
Development ; 147(3)2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31915147

RESUMO

Identification of cell type-specific cis-regulatory elements (CREs) is crucial for understanding development and disease, although identification of functional regulatory elements remains challenging. We hypothesized that context-specific CREs could be identified by context-specific non-coding RNA (ncRNA) profiling, based on the observation that active CREs produce ncRNAs. We applied ncRNA profiling to identify rod and cone photoreceptor CREs from wild-type and mutant mouse retinas, defined by presence or absence, respectively, of the rod-specific transcription factor (TF) NrlNrl-dependent ncRNA expression strongly correlated with epigenetic profiles of rod and cone photoreceptors, identified thousands of candidate rod- and cone-specific CREs, and identified motifs for rod- and cone-specific TFs. Colocalization of NRL and the retinal TF CRX correlated with rod-specific ncRNA expression, whereas CRX alone favored cone-specific ncRNA expression, providing quantitative evidence that heterotypic TF interactions distinguish cell type-specific CRE activity. We validated the activity of novel Nrl-dependent ncRNA-defined CREs in developing cones. This work supports differential ncRNA profiling as a platform for the identification of cell type-specific CREs and the discovery of molecular mechanisms underlying TF-dependent CRE activity.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas do Olho/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Transcrição Gênica/genética , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas do Olho/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Camundongos Knockout , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Transativadores/genética , Transativadores/metabolismo , Transcriptoma
9.
Elife ; 82019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30896405

RESUMO

Risk for Atrial Fibrillation (AF), the most common human arrhythmia, has a major genetic component. The T-box transcription factor TBX5 influences human AF risk, and adult-specific Tbx5-mutant mice demonstrate spontaneous AF. We report that TBX5 is critical for cellular Ca2+ homeostasis, providing a molecular mechanism underlying the genetic implication of TBX5 in AF. We show that cardiomyocyte action potential (AP) abnormalities in Tbx5-deficient atrial cardiomyocytes are caused by a decreased sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA2)-mediated SR calcium uptake which was balanced by enhanced trans-sarcolemmal calcium fluxes (calcium current and sodium/calcium exchanger), providing mechanisms for triggered activity. The AP defects, cardiomyocyte ectopy, and AF caused by TBX5 deficiency were rescued by phospholamban removal, which normalized SERCA function. These results directly link transcriptional control of SERCA2 activity, depressed SR Ca2+ sequestration, enhanced trans-sarcolemmal calcium fluxes, and AF, establishing a mechanism underlying the genetic basis for a Ca2+-dependent pathway for AF risk.


Assuntos
Fibrilação Atrial/fisiopatologia , Cálcio/metabolismo , Proteínas Mutantes/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Cátions Bivalentes/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Camundongos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Proteínas com Domínio T/deficiência
10.
Biol Sex Differ ; 9(1): 48, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30376877

RESUMO

BACKGROUND: Recently, we showed that exogenous treatment with estrogen (E2) rescues pre-existing advanced heart failure (HF) in mice. Since most of the biological actions of E2 are mediated through the classical estrogen receptors alpha (ERα) and/or beta (ERß), and both these receptors are present in the heart, we examined the role of ERα and ERß in the rescue action of E2 against HF. METHODS: Severe HF was induced in male mice by transverse aortic constriction-induced pressure overload. Once the ejection fraction (EF) reached ~ 35%, mice were treated with selective agonists for ERα (PPT, 850 µg/kg/day), ERß (DPN, 850 µg/kg/day), or E2 (30 µg/kg/day) together with an ERß-antagonist (PHTPP, 850 µg/kg/day) for 10 days. RESULTS: EF of HF mice was significantly improved to 45.3 ± 2.1% with diarylpropionitrile (DPN) treatment, but not with PPT (31.1 ± 2.3%). E2 failed to rescue HF in the presence of PHTPP, as there was no significant improvement in the EF at the end of the 10-day treatment (32.5 ± 5.2%). The improvement of heart function in HF mice treated with ERß agonist DPN was also associated with reduced cardiac fibrosis and increased cardiac angiogenesis, while the ERα agonist PPT had no significant effect on either cardiac fibrosis or angiogenesis. Furthermore, DPN improved hemodynamic parameters in HF mice, whereas PPT had no significant effect. CONCLUSIONS: E2 treatment rescues pre-existing severe HF mainly through ERß. Rescue of HF by ERß activation is also associated with stimulation of cardiac angiogenesis, suppression of fibrosis, and restoration of hemodynamic parameters.


Assuntos
Estradiol/uso terapêutico , Receptor beta de Estrogênio/fisiologia , Estrogênios/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Animais , Células Cultivadas , Técnicas de Cocultura , Estradiol/farmacologia , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/fisiologia , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/antagonistas & inibidores , Estrogênios/farmacologia , Coração/efeitos dos fármacos , Coração/fisiologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Camundongos , Ratos
11.
Proc Natl Acad Sci U S A ; 115(45): E10615-E10624, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30352852

RESUMO

Codevelopment of the lungs and heart underlies key evolutionary innovations in the transition to terrestrial life. Cardiac specializations that support pulmonary circulation, including the atrial septum, are generated by second heart field (SHF) cardiopulmonary progenitors (CPPs). It has been presumed that transcription factors required in the SHF for cardiac septation, e.g., Tbx5, directly drive a cardiac morphogenesis gene-regulatory network. Here, we report instead that TBX5 directly drives Wnt ligands to initiate a bidirectional signaling loop between cardiopulmonary mesoderm and the foregut endoderm for endodermal pulmonary specification and, subsequently, atrial septation. We show that Tbx5 is required for pulmonary specification in mice and amphibians but not for swim bladder development in zebrafish. TBX5 is non-cell-autonomously required for pulmonary endoderm specification by directly driving Wnt2 and Wnt2b expression in cardiopulmonary mesoderm. TBX5 ChIP-sequencing identified cis-regulatory elements at Wnt2 sufficient for endogenous Wnt2 expression domains in vivo and required for Wnt2 expression in precardiac mesoderm in vitro. Tbx5 cooperated with Shh signaling to drive Wnt2b expression for lung morphogenesis. Tbx5 haploinsufficiency in mice, a model of Holt-Oram syndrome, caused a quantitative decrement of mesodermal-to-endodermal Wnt signaling and subsequent endodermal-to-mesodermal Shh signaling required for cardiac morphogenesis. Thus, Tbx5 initiates a mesoderm-endoderm-mesoderm signaling loop in lunged vertebrates that provides a molecular basis for the coevolution of pulmonary and cardiac structures required for terrestrial life.


Assuntos
Evolução Molecular , Coração/embriologia , Pulmão/embriologia , Proteínas com Domínio T/genética , Proteína Wnt2/genética , Animais , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Camundongos , Camundongos Mutantes , Transdução de Sinais , Transcrição Gênica , Peixe-Zebra/embriologia
12.
Elife ; 62017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-29280435

RESUMO

The noncoding genome is pervasively transcribed. Noncoding RNAs (ncRNAs) generated from enhancers have been proposed as a general facet of enhancer function and some have been shown to be required for enhancer activity. Here we examine the transcription-factor-(TF)-dependence of ncRNA expression to define enhancers and enhancer-associated ncRNAs that are involved in a TF-dependent regulatory network. TBX5, a cardiac TF, regulates a network of cardiac channel genes to maintain cardiac rhythm. We deep sequenced wildtype and Tbx5-mutant mouse atria, identifying ~2600 novel Tbx5-dependent ncRNAs. Tbx5-dependent ncRNAs were enriched for tissue-specific marks of active enhancers genome-wide. Tbx5-dependent ncRNAs emanated from regions that are enriched for TBX5-binding and that demonstrated Tbx5-dependent enhancer activity. Tbx5-dependent ncRNA transcription provided a quantitative metric of Tbx5-dependent enhancer activity, correlating with target gene expression. We identified RACER, a novel Tbx5-dependent long noncoding RNA (lncRNA) required for the expression of the calcium-handling gene Ryr2. We illustrate that TF-dependent enhancer transcription can illuminate components of TF-dependent gene regulatory networks.


Assuntos
Elementos Facilitadores Genéticos , Redes Reguladoras de Genes , RNA não Traduzido/biossíntese , Proteínas com Domínio T/metabolismo , Transcrição Gênica , Animais , Coração/fisiologia , Camundongos , Periodicidade
13.
Nat Struct Mol Biol ; 24(7): 596-603, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28628087

RESUMO

We recently described a new class of long noncoding RNAs (lncRNAs) that are distinguished by especially tight chromatin association and whose presence is strongly correlated to expression of nearby genes. Here, we examine the cis-enhancer mechanism of this class of chromatin-enriched RNA (cheRNA) across multiple human cell lines. cheRNAs are largely cell type specific and provide the most reliable chromatin signature to predict cis-gene transcription in every human cell type examined. Targeted depletion of three cheRNAs decreases expression of their neighboring genes, indicating potential co-activator function, and single-molecule fluorescence in situ hybridization (smFISH) of one cheRNA-distal target gene pair suggests a spatial overlap consistent with a role in chromosome looping. Additionally, the cheRNA HIDALGO stimulates the fetal hemoglobin subunit gamma 1 (HBG1) gene during erythroid differentiation by promoting contacts to a downstream enhancer. Our results suggest that multiple cheRNAs activate proximal lineage-specific gene transcription.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica , RNA Longo não Codificante/metabolismo , Transcrição Gênica , Linhagem Celular , Humanos
14.
Sci Transl Med ; 8(354): 354ra115, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27582060

RESUMO

Cardiac rhythm is extremely robust, generating 2 billion contraction cycles during the average human life span. Transcriptional control of cardiac rhythm is poorly understood. We found that removal of the transcription factor gene Tbx5 from the adult mouse caused primary spontaneous and sustained atrial fibrillation (AF). Atrial cardiomyocytes from the Tbx5-mutant mice exhibited action potential abnormalities, including spontaneous depolarizations, which were rescued by chelating free calcium. We identified a multitiered transcriptional network that linked seven previously defined AF risk loci: TBX5 directly activated PITX2, and TBX5 and PITX2 antagonistically regulated membrane effector genes Scn5a, Gja1, Ryr2, Dsp, and Atp2a2 In addition, reduced Tbx5 dose by adult-specific haploinsufficiency caused decreased target gene expression, myocardial automaticity, and AF inducibility, which were all rescued by Pitx2 haploinsufficiency in mice. These results defined a transcriptional architecture for atrial rhythm control organized as an incoherent feed-forward loop, driven by TBX5 and modulated by PITX2. TBX5/PITX2 interplay provides tight control of atrial rhythm effector gene expression, and perturbation of the co-regulated network caused AF susceptibility. This work provides a model for the molecular mechanisms underpinning the genetic implication of multiple AF genome-wide association studies loci and will contribute to future efforts to stratify patients for AF risk by genotype.


Assuntos
Redes Reguladoras de Genes , Frequência Cardíaca/genética , Proteínas de Homeodomínio/genética , Proteínas com Domínio T/genética , Fatores de Transcrição/genética , Animais , Fibrilação Atrial/genética , Fibrilação Atrial/fisiopatologia , Função Atrial/genética , Função Atrial/fisiologia , Sinalização do Cálcio , Modelos Animais de Doenças , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Haploinsuficiência , Frequência Cardíaca/fisiologia , Proteínas de Homeodomínio/fisiologia , Humanos , Camundongos , Camundongos Knockout , Contração Miocárdica/genética , Contração Miocárdica/fisiologia , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/fisiologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/fisiologia , Pesquisa Translacional Biomédica , Proteína Homeobox PITX2
15.
J Am Heart Assoc ; 5(1)2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26802104

RESUMO

BACKGROUND: Estrogen pretreatment has been shown to attenuate the development of heart hypertrophy, but it is not known whether estrogen could also rescue heart failure (HF). Furthermore, the heart has all the machinery to locally biosynthesize estrogen via aromatase, but the role of local cardiac estrogen synthesis in HF has not yet been studied. Here we hypothesized that cardiac estrogen is reduced in HF and examined whether exogenous estrogen therapy can rescue HF. METHODS AND RESULTS: HF was induced by transaortic constriction in mice, and once mice reached an ejection fraction (EF) of ≈35%, they were treated with estrogen for 10 days. Cardiac structure and function, angiogenesis, and fibrosis were assessed, and estrogen was measured in plasma and in heart. Cardiac estrogen concentrations (6.18±1.12 pg/160 mg heart in HF versus 17.79±1.28 pg/mL in control) and aromatase transcripts (0.19±0.04, normalized to control, P<0.05) were significantly reduced in HF. Estrogen therapy increased cardiac estrogen 3-fold and restored aromatase transcripts. Estrogen also rescued HF by restoring ejection fraction to 53.1±1.3% (P<0.001) and improving cardiac hemodynamics both in male and female mice. Estrogen therapy stimulated angiogenesis as capillary density increased from 0.66±0.07 in HF to 2.83±0.14 (P<0.001, normalized to control) and reversed the fibrotic scarring observed in HF (45.5±2.8% in HF versus 5.3±1.0%, P<0.001). Stimulation of angiogenesis by estrogen seems to be one of the key mechanisms, since in the presence of an angiogenesis inhibitor estrogen failed to rescue HF (ejection fraction=29.3±2.1%, P<0.001 versus E2). CONCLUSIONS: Estrogen rescues pre-existing HF by restoring cardiac estrogen and aromatase, stimulating angiogenesis, and suppressing fibrosis.


Assuntos
Estradiol/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Disfunção Ventricular Esquerda/tratamento farmacológico , Animais , Aromatase/genética , Aromatase/metabolismo , Modelos Animais de Doenças , Estradiol/sangue , Receptor beta de Estrogênio/efeitos dos fármacos , Receptor beta de Estrogênio/metabolismo , Feminino , Fibrose , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Recuperação de Função Fisiológica , Transdução de Sinais/efeitos dos fármacos , Volume Sistólico/efeitos dos fármacos , Fatores de Tempo , Disfunção Ventricular Esquerda/sangue , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda/efeitos dos fármacos
16.
Am J Cardiovasc Dis ; 2(3): 192-207, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22937489

RESUMO

During Pregnancy, heart develops physiological left ventricular hypertrophy as a result of the natural volume overload. Previously we have characterized the molecular and functional signature of heart hypertrophy during pregnancy. Cardiac hypertrophy during pregnancy is a complex process that involves many changes including in the signalling pathways, composition of extracellular matrix as well as the levels of sex hormones. This review summarises the recent advances and the new frontiers in the context of heart hypertrophy during pregnancy. In particular we focus on structural and extracellular matrix remodelling as well as signalling pathways in pregnancy-induced physiological heart hypertrophy. Emerging evidence shows that various microRNAs modulate key components of hypertrophy, therefore the role of microRNAs in the regulation of gene expression in pregnancy induced hypertrophy is also discussed. We also review the role of ubiquitin proteasome system, the major machinery for the degradation of damaged and misfolded proteins, in heart hypertrophy. The role of sex hormones in particular estrogen in cardiac remodeling during pregnancy is also discussed. We also review pregnancy-induced cardiovascular complications such as peripartum cardiomyopathy and pre-eclampsia and how the knowledge from the animal studies may help us to develop new therapeutic strategies for better treatment of cardiovascular diseases during pregnancy. Special emphasis has to be given to the guidelines on disease management in pregnancy.

17.
J Appl Physiol (1985) ; 113(8): 1253-9, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22923507

RESUMO

Pregnancy is associated with ventricular hypertrophy and volume overload. Here we investigated whether late pregnancy is associated with cardiac structural and hemodynamic changes, and if these changes are reversed postpartum. Female mice (C57BL/6) were used in nonpregnant diestrus (NP), late-pregnant (LP), or 7-day postpartum (PP7) stages. Echocardiography and cardiac catheterization were performed to monitor cardiac hemodynamics. Transcript expression of proangiogenic vascular endothelial growth factor, cardiac fetal gene osteopontin, cardiac extracellular matrix-degrading enzymes matrix metalloproteinase-2, and a disintegrin and metalloproteinase-15 and -17 were assessed by RT-PCR. Masson trichrome staining for cardiac fibrosis and endothelial marker CD31 immunostaining for angiogenesis were performed. Heart hypertrophy in LP was fully reversed in PP7 (heart weight: NP = 114 ± 4 mg; LP = 147 ± 2 mg; PP7 = 117 ± 8 mg, P < 0.05 for LP vs. PP7). LP had elevated left ventricular (LV) pressure (119 ± 5 mmHg in LP vs. 92 ± 7 mmHg in NP, P < 0.05) that was restored at PP7 (95 ± 8 mmHg, P < 0.001 vs. LP). LP had increased LV contractility (maximal rate of increase of LV pressure = 6,664 ± 297 mmHg/s in LP vs. 4,294 ± 568 mmHg/s in NP, P < 0.01) that was restored at PP7 (5,313 ± 636 mmHg/s, P < 0.05 vs. LP). LV ejection fraction was reduced in LP (LP = 58 ± 1% vs. NP = 70 ± 4%, P < 0.001) and was already restored at PP1 (77 ± 2%, P < 0.001 vs. LP). Myocardial angiogenesis was significantly increased in LP (capillary density = 1.25 ± 0.02 vs. 0.95 ± 0.01 capillaries/myocyte in NP, P < 0.001) and was fully restored in PP7 (0.98 ± 0.01, P < 0.001 vs. LP). Vascular endothelial growth factor was upregulated in LP (LP = 1.4 ± 0.1 vs. NP = 1 ± 0.1, normalized to NP, P < 0.001) and was restored in PP7 (PP7 = 0.83 ± 0.1, P < 0.001 vs. LP). There was no increase in cardiac fibrosis in LP. Matrix metalloproteinase-2 transcript levels were downregulated in LP (LP = 0.47 ± 0.03 vs. NP = 1 ± 0.01, normalized to NP, P < 0.001) and was restored at PP7 (0.70 ± 0.1, P < 0.001 vs. LP). In conclusion, pregnancy-induced heart hypertrophy is associated with transient cardiac dysfunction, increased cardiac angiogenesis, lack of fibrosis, and decreased expression of remodeling enzymes that are reversed postpartum.


Assuntos
Cardiomegalia/fisiopatologia , Ventrículos do Coração/fisiopatologia , Período Pós-Parto/fisiologia , Complicações Cardiovasculares na Gravidez/fisiopatologia , Animais , Pressão Sanguínea/genética , Pressão Sanguínea/fisiologia , Cardiomegalia/genética , Cardiomegalia/metabolismo , Desintegrinas/genética , Desintegrinas/metabolismo , Regulação para Baixo/genética , Ecocardiografia/métodos , Feminino , Fibrose/genética , Fibrose/metabolismo , Fibrose/fisiopatologia , Ventrículos do Coração/metabolismo , Hemodinâmica , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/fisiopatologia , Osteopontina/genética , Osteopontina/metabolismo , Período Pós-Parto/genética , Período Pós-Parto/metabolismo , Gravidez , Complicações Cardiovasculares na Gravidez/genética , Complicações Cardiovasculares na Gravidez/metabolismo , Regulação para Cima/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Hypertension ; 60(2): 425-30, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22753213

RESUMO

Pretreatment with a phytoestrogen genistein has been shown to attenuate the development of pulmonary hypertension (PH). Because PH is not always diagnosed early, we examined whether genistein could also reverse preexisting established PH and prevent associated right heart failure (RHF). PH was induced in male rats by 60 mg/kg of monocrotaline. After 21 days, when PH was well established, rats received daily injection of genistein (1 mg/kg per day) for 10 days or were left untreated to develop RHF by day 30. Effects of genistein on human pulmonary artery smooth muscle cell and endothelial cell proliferation and neonatal rat ventricular myocyte hypertrophy were assessed in vitro. Severe PH was evident 21 days after monocrotaline, as peak systolic right ventricular pressure increased to 66.35±1.03 mm Hg and right ventricular ejection fraction reduced to 41.99±1.27%. PH progressed to RHF by day 30 (right ventricular pressure, 72.41±1.87 mm Hg; RV ejection fraction, 29.25±0.88%), and mortality was ≈75% in RHF rats. Genistein therapy resulted in significant improvement in lung and heart function as right ventricular pressure was significantly reduced to 43.34±4.08 mm Hg and right ventricular ejection fraction was fully restored to 65.67±1.08% similar to control. Genistein reversed PH-induced pulmonary vascular remodeling in vivo and inhibited human pulmonary artery smooth muscle cell proliferation by ≈50% in vitro likely through estrogen receptor-ß. Genistein also reversed right ventricular hypertrophy (right ventricular hypertrophy index, 0.35±0.029 versus 0.70±0.080 in RHF), inhibited neonatal rat ventricular myocyte hypertrophy, and restored PH-induced loss of capillaries in the right ventricle. These improvements in cardiopulmonary function and structure resulted in 100% survival by day 30. Genistein restored PH-induced downregulation of estrogen receptor-ß expression in the right ventricle and lung. In conclusion, genistein therapy not only rescues preexisting severe PH but also prevents the progression of severe PH to RHF.


Assuntos
Genisteína/uso terapêutico , Glycine max , Insuficiência Cardíaca/prevenção & controle , Hipertensão Pulmonar/tratamento farmacológico , Fitoestrógenos/uso terapêutico , Animais , Capilares/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Receptor beta de Estrogênio/metabolismo , Genisteína/farmacologia , Insuficiência Cardíaca/metabolismo , Humanos , Hipertensão Pulmonar/metabolismo , Técnicas In Vitro , Masculino , Fitoestrógenos/farmacologia , Artéria Pulmonar/citologia , Artéria Pulmonar/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
19.
J Appl Physiol (1985) ; 113(1): 149-58, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22628376

RESUMO

Chronic pulmonary hypertension (PH) leads to right-ventricular failure (RVF) characterized by RV remodeling. Ventricular remodeling is emerging as an important process during heart failure and recovery. Remodeling in RVF induced by PH is not fully understood. Recently we discovered that estrogen (E2) therapy can rescue severe preexisting PH. Here, we focused on whether E2 (42.5 µg·kg(-1)·day(-1), 10 days) can reverse adverse RV structural and extracellular matrix (ECM) remodeling induced by PH using monocrotaline (MCT, 60 mg/kg). RV fibrosis was evident in RVF males. Intact females developed less severe RV remodeling compared with males and ovariectomized (OVX) females. Novel ECM-degrading disintegrin-metalloproteinases ADAM15 and ADAM17 transcripts were elevated ∼2-fold in all RVF animals. E2 therapy reversed RV remodeling in all groups. In vitro, E2 directly inhibited ANG II-induced expression of fibrosis markers as well as the metalloproteinases in cultured cardiac fibroblasts. Estrogen receptor-ß agonist diarylpropionitrile (DPN) but not estrogen receptor-α agonist 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) was as effective as E2 in inhibiting expression of these genes. Expression of ECM-interacting cardiac fetal-gene osteopontin (OPN) also increased ∼9-fold in RVF males. Intact females were partially protected from OPN upregulation (∼2-fold) but OVX females were not. E2 reversed OPN upregulation in all groups. Upregulation of OPN was also reversed in vitro by E2. Plasma OPN was elevated in RVF (∼1.5-fold) and decreased to control levels in the E2 group. RVF resulted in elevated Akt phosphorylation, but not ERK, in the RV, and E2 therapy restored Akt phosphorylation. In conclusion, E2 therapy reverses adverse RV remodeling associated with PH by reversing fibrosis and upregulation of novel ECM enzymes ADAM15, ADAM17, and OPN. These effects are likely mediated through estrogen receptor-ß.


Assuntos
Estradiol/uso terapêutico , Matriz Extracelular/efeitos dos fármacos , Hipertensão Pulmonar/tratamento farmacológico , Remodelação Ventricular/efeitos dos fármacos , Proteínas ADAM/biossíntese , Proteína ADAM17 , Angiotensina II/metabolismo , Animais , Células Cultivadas , Receptor alfa de Estrogênio/agonistas , Receptor beta de Estrogênio/agonistas , Feminino , Fibroblastos/efeitos dos fármacos , Hipertensão Pulmonar/induzido quimicamente , Masculino , Proteínas de Membrana/biossíntese , Monocrotalina/toxicidade , Nitrilas/farmacologia , Osteopontina/biossíntese , Fenóis/farmacologia , Propionatos/farmacologia , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Índice de Gravidade de Doença , Remodelação Ventricular/fisiologia
20.
Hypertension ; 58(3): 512-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21747043

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling leading to right ventricular (RV) hypertrophy and failure. Intralipid (ILP), a source of parenteral nutrition for patients, contains γ-linolenic acid and soy-derived phytoestrogens that are protective for lungs and heart. We, therefore, investigated the therapeutic potential of ILP in preventing and rescuing monocrotaline-induced PAH and RV dysfunction. PAH was induced in male rats with monocrotaline (60 mg/kg). Rats then received daily ILP (1 mL of 20% ILP per day IP) from day 1 to day 30 for prevention protocol or from day 21 to day 30 for rescue protocol. Other monocrotaline-injected rats were left untreated to develop severe PAH by day 21 or RV failure by approximately day 30. Saline or ILP-treated rats served as controls. Significant increase in RV pressure and decrease in RV ejection fraction in the RV failure group resulted in high mortality. Therapy with ILP resulted in 100% survival and prevented PAH-induced RV failure by preserving RV pressure and RV ejection fraction and preventing RV hypertrophy and lung remodeling. In preexisting severe PAH, ILP attenuated most lung and RV abnormalities. The beneficial effects of ILP in PAH seem to result from the interplay of various factors, among which preservation and/or stimulation of angiogenesis, suppression and/or reversal of inflammation, fibrosis and hypertrophy, in both lung and RV, appear to be major contributors. In conclusion, ILP not only prevents the development of PAH and RV failure but also rescues preexisting severe PAH.


Assuntos
Hipertensão Pulmonar/prevenção & controle , Hipertrofia Ventricular Direita/prevenção & controle , Fosfolipídeos/farmacologia , Óleo de Soja/farmacologia , Actinas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Caspase 3/metabolismo , Emulsões/farmacologia , Emulsões Gordurosas Intravenosas/farmacologia , Fibrose/prevenção & controle , Coração/efeitos dos fármacos , Coração/fisiopatologia , Hemodinâmica/efeitos dos fármacos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/fisiopatologia , Imuno-Histoquímica , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Microscopia Confocal , Monocrotalina , Miocárdio/patologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Ratos , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...